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ABSTRACT

This paper is concerned with asymptotic expansions of solutions of

von Karman's swirling flow problem. These expansions are used to prove the

convergence of a class of approximative problems, which are set up by

substituting for the infinite interval on which von Karman's problem is posed by

a finite but large one and by imposing supplementary boundary conditions at

the far end. The asymptotic expansions are crucial for the determination of

the order of convergence. Exponential convergence is shown for well-posed

approximative problems.

The given approach is applicable to general autonomous nonlinear boundary

value problems on infinite intervals, for which the von Karman problem may be

considered as a model problem.
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SIGNIFICANCE AND EXPLANATION

This paper is concerned with the von Karman swirling flow problem which

describes the velocity field of a fluid over an infinite rotating disk. It is

assumed that the whole half space over the disk is filled with fluid. By

restricting the class of admissible solutions von Karman (1921) war able to

reduce the Navier-Stokes equations which describe this fluid dynamical

configuration, and which are partial differential equations, to a system of

ordinary differential equations which are posed on an infinite interval. This

system of ordinary differential equations can well be considered as a model

problem for boundary value problems on infinite intervals. The infinite

interval is difficult for computation. It is a natural procedure to restrict

the infinite interval to a finite but large one and to impose additional

conditions at the far end which should describe the behavior of the solution

far away from the disk. In this paper information about the asymptotic (which

means far away from the disk) behavior is obtained and used for the

construction of these far away boundary conditions. A theorem, which implies

convergence of the 'infinite' solution to the 'infinite' solution as the

length of the interval becomes infinite, is proved and exponential convergence

is shown for suitable approximating problems. The extension of the derived

statements to more general problems posed on infinite intervals is

straightforward.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the author of this report.
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ASYMPTOTIC ANALYSIS OF von KARMAN FLOWS

Peter A. Markowich

1. Introduction

von Karman showed in 1921 that the Navier-Stokes equations for

a stationary axisymmetric flow of a viscous incompressible

fluid occupying the half space over an infinite rotating disk

reduce to a system of two ordinary differential equations when

using a cylindrical coordinate system (r,p,z).

The disk is rotating in the plane z = 0 around the z-axis with

angular velocity 0o > 0 and the angular velocity of the fluid

in z = - is yo" von Karman considered only the case y = 0,

but the generalization to y E JR is straightforward.

With the normalization:

1

(1.1) x = (Q o/V) z

where v is the specific viscosity of the fluid, the following

similarity equations result from the Navier-Stokes equations:

(1.2) f"' (x) + 2f(x)f"(x) = (f'(x)) 2 - g2 (x) + y 2

(1.3) g"(x) + 2f(x)g'(x) = 2f'(x)g(x)

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041. This
material is based upon work supported by the National Science Foundation under

: L Grant No. MCS-7927062.



The velocity field of the fluid in the (r,p,z) - coordinate

system is represented by (aorf'(x),norg(x),-2(Vno)/f(x)).

Appropriate boundary conditions at the disk are:

(1.4) f(0) = a E IR, f' (0) = 0, g(O) = 1.

A non zero value a represents blowing from the disk (a < 0)

or suction to the disk (a > 0). The third boundary condition

affecting the angular velocity implies that the fluid adhers

to the disk. Boundary conditions at infinity are

(1.5) f'(-) = 0, g(-) = Y.

For y = 0 McLeod (1969a) has proven the existence of a solu-

tion of problem (1.2), (1.3), (1.4), (1.5) for all a E IR.

He obtained qualitative properties of this solution (f,g)

which hold independently of the value of a:

(1.6.a) 0 4 f' < 1, (b) lim f(x) = f E JR
X-O

(1.7) g > 0, g' < 0

The solution (f,g) is non-oscillatory, i.e. neither f nor

g' oscillate around zero for x - . Moreover f. [-, )

holds for every solution f (see McLeod 1970), and if f, E IR+

then f - f ,f',f",g,g' decay exponentially.
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For y 0 O McLeod (1969a) concluded that

(1.8) signum f' (x) f const, signum g' (x) const for x -

for every solution (f,g). Furthermore he proved the existence

of a solution for y > 0 (1971) independently of the value of

a, uniquenss for y = 1 and a : 0 and a nonexistence theorem for

y =-1 and a < 0. Rogers and Lance (1960) heuristically derived

asymptotic expansions for f and g in the case y * 0 and McLeod

(1969b) constructed a rig :'ous proof for these expansions

which imply an exponentially dampened oscillatory decay of

f-f and g-y. But his proof breaks oown in the case Y = 0.

Lentini and Keller (1980) performed a numerical study of the

swirling flow problem with a = 0 by reducing the infinite in-

terval [o,-] to a finite one [0,X] with X >>O and by imposing

two additional asymptotic conditions, atx = X, which they de-

rived from the requirement that unbounded solution components

Tof the in (f.,0,O,y,O) linearized problem vanish at infinity.

Their results clearly indicate that infinitely many solutions

(fi,gi) exist for y = 0 which fulfill

(1.9) 0 < fi ) < f _ ( ) i = 2,3,....

There are two goals of this paper. The first is to derive an

asymptotic expansion for f and g in the case r = 0, f. > 0,

and to calculate the leading coefficients of the expansion

-3-



in the case y *0. The second goal is to use these expansions

in order to prove convergence statements for reduced problems

posed on finite intervals.

The organisation of the paper is the following: in paragraph

2 we reformulate the swirling flow problem to a first order

boundary value problem on [0,,a] which have been treated by de Hoog

and Weiss (1980) andMarkowich (1980) and collect information on

the solutions of these problems, in paragraph 3 we derive the

asymptotic expansions for y = 0, inparagraph 4 we investigate

the case y * 0 and in paragraph 5 asymptotic boundary condi-

tions are treated.

The method employed to obtain the asymptotic expansions is

linearization of (1.2), (1.3) around (f ,O,O,y,O) (as used

by McLeod (1969)) and a contraction mapping theorem which

uses the closeness of the solutions of the linearized and non-

linear problems.
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2. Reformulation of the Swirling Flow Problem

We reduce (1.2), (1.3) to a first order system by substituting

(2.1) 1 = f'Y = fl' y3  f", Y4  ' gy 5 = g

y= (yl1y21y31 y41'y5 )
T

and get

y3
(2.2) Y' = F(y,y) =-2yy 2 2~-y + y2

-2y, y5 + 2y2y4

The boundary conditions transform to

1 00 0 01

(2.3) ~0 1 0 0 0 y(0) =0 (By(0) =b)

a 0 1 01 0 0(

(2.4) lim 1 y(x) = ro (lim Cy(x) =c(Y)).
x,10 0 0 1 0] Y X*

Because of (1.6.b) and (1.5):

(2.5) 1lim y (x) = yM E IR 5 and y E C([O,cKI)

holds and (2.4) can be changed to CY,,= c(-r). From (2.5)

and (2.2) we deduce



(2.6) im y' (x) = F(y ,Y) = 0

This is a nonlinear equation which can be solved immediatly:

(2.7) y. = (f ,0,O,Y,O)T with f I ]R.

A one parameter solution manifold y. = yc(f.,y) which is con-

sistent with (2.4) is specified for fixed y E IR.

The next step is to calculate the matrix

O 1 0 0 0
3F(y.(f.,y),y) 0 0 1 0 0

(2.8) A(f ,y) y 0 0 -2f -2y 0

O 0 0 0 1

0 2Y 0 0 -2f.

which has the eigenvalues vi defined by the zeros of the equa-

tion

(2.9) v[v 2 (v +2f.) 2 +4y2] = 0

These eigenvalues are:

v 1 (fO,Y) S0vI (f ,y) -fO

v 2 (f Y) -f + c I ( f Y) + ic (f.,y)

(2.10) v 3 (f ,) =-f + c1 (f ,) - ic (f ,Y) = v 2 (f ,Y)

v 4 (f.,Y) =- f - c1 (fO,Y) + ic2 (f,y)

v 5 (fo,T) =- fo - c I (f. ,Y) - ic2 (fo,) = v4 (f.,Y)

-6-



where c ,c2 are defined by

f2

c1 (fy o .~ (f4 +4y2)1/ 2 + _)/

c 2 (fy) = fZ+4T2)1/ 2  -

If Y = 0 all eigenvalues are real and fulfill

v 2 >0, V 3 > 0, V - v 4 -v 5  0 if fo < 0

(2.12)(a) v I = v2  v3 - 0, v4 < 0, V5 < 0 if f > 0

v v 2  v 3  v 4  v 5 - if f = O

If y * 0 the eigenvalues v2 ,v3 ,v4 ,v5 have a nonvanishing ima-

ginery part for all f4O E 3R and

(2.12)(b) Re v 2 > 0, Re v 3 > 0; Re v 4 < 0, Re v 5 < 0 for f0 E IR.

The decrease of the rank of A(f.,y) in y = 0 causes the dif-

ferent behavior of the velocity fields for y = 0 and T * 0

and it also requires different treatment. This will be pointed

out in the paragraphs 3 and 4. Now we transform A(f.,y) to its

Jordan canonical form J(f,,y):

-1

(2.13) J(fy) = E(f ,T) A(f,T)E(f ,Y)

and substitute

(2.13) E(f ,Y)z = y - Y0 (f.,Y)

-7-



in (2.2). So we get the new problem

(2.14) z J (f ,,y)z + h(z,f ,Y)

(2.15) z(GO) = 0

where h(z,f.,y) is defined by

(2.16) h(z,fC1,y) = E(f.,r) -1F(E(f Y)z + yj(f.,Y),Y) - (f.,Y)Z

Regarding h(z,fc.,y) for fixed y and f., as a perturbation to

equation (2.14) we come up with an 'inhornogenous' boundary

value problem.

Using a suitable norm in IR5we derive

(2.17) (a) Ih(z,f.,y) 11 < b 1(fo ,y) I1Iz III

(2.17)(b) Ilh(z 1 f.,Y) - 2' f1OY)II <, b 2 (fCOY) (I1z 1II+11 z 2-1)1z1 z2

where b 1 (f,r) and b 2 (f.,y) are independent of z resp. z I and

z2'

In order to solve problem (2.14) we have to find an appropriate

particular solution and therefore let us briefly discuss the

(general) problem

(2.18) u' =Au + f(x), x >, 6 0

-8-



where the Jordan matrix A = diag(A0 A+,A_ ) is partitioned cor-

respondingly to its eigenvalues will real part equal, larger

and smaller zero.

Pn appropriate choice for a particular solution up =

=(UPoup+,up) T, where f = (f0 f+,f_)T is partitioned according

to A, is the following:

Ax -A
(a) upo(x) = eA 0 1 e-A os f (s)ds

A x x -As(2.19) (b) up+(x) = e + f e- + f+ (s)ds

Ax x -A-s(c) up_(x) = eA - f e- f_(s)ds

6

if f0 fulfills [If (x) If = O(x - r - &) where c > 0 and r is the

dimension of the largest Jordan block in A . This choice was

suggested by Lentini (1978) and de Hoog and Weiss (1980).

In operator form we can write

(2.20) up(x) = (Hf) (x) = (H0 f0 ,H+ f+,H_f_)T(x).

H is a linear operator on the space of all function f, for

which f E C([S,o]) and I1f (x)Ij = O(x - r - c ) holds.

If A+, A_ are diagonalmatrices the following estimates are

easily derived.

-9-



(a) l(H f )(x)II <, const olf 11+ + [+~

(b) Ii (H 0f 0)(x)lI <, const x- E max Iltr+e f o(t) , C > 0
(2.21) 00t>,x

(c) 11l(H-f(x) 114 const *I11f _I [16, xJ

(d) 11 (Hf) (x)I 114 const * IF_ 11 [6 ,x]X-1

if f_(x) = F_(x)x_1 with pi > 0

where 1111[a,b] denotes the max-norm on the interval [a,b].

The constants depend on A but not on 6 and f. If f e-A~sf(s)ds
6

exists then (H-f-)(x) can be split up into:

(2.22) (H-f)(x) = e -x f eA~ f(s)ds + (H~f_)(x)
6

where 9- is defined by

A ~ -A-s(2.23) (-Hf_)(x) = eA f e - f(s)ds.

(~f) =(H f0 H f ,- f_) is also a particular solution of

(2.18). If f(x) =F(x)en 0X with iiFII 6l 4 coflst and

A-= -~I with rio'ni > 0, then the following estimates hold:

(2.24) I if)()I cntIFi en nx >
H_~[x~ o os 1F1 1

(2.25) ii(Hf) (x)l 4 const 11 Fli1 (6,x1 (eno Xe(n-no)&e- nIx)

(2.26) ll (H 0 f 0 (x)I 11 const 11 FI[,_ e- nox

-10-



3Asymptotic Behaviour of Solutions in the case y =0.

After straightforward calculation we get

0 1

0

(3.1) J(f.,0) =0

1 0 0 0 1

o 1 0 0 -2f~

(3.2) E(f.,0) 0 0 0 0 4f2

o 0 1 1 0

o o 0 -2fO 0

(3.3) h(z,f,O,1) h h(z,f 0O)=

1(-8f 2 Z (z+ +(z 2z 2-Z+z2)
4-F co 5 1 5) +( 2  co f 5) 2 ( 3 + 4)2

1 CO (-8f z5 (z + + ( f) - 2.. +z 2)2 O5 1 z5  ( 2  CO 5) ( 3  z4
1 Go-(4f z (z+ +2(z fz)(z Z

2f c 4 1 + 5) +2z- z5  ( 3 +z 4)Go 1
-2 z 4 ( z1 +Z 5 ) y- (z2 -2f. z5 ) (z3 +Z 4 )

-2 z5 (z1 +z ) + ( ((Z - 2f z ) 2 - (Z3 + z ) 2)

assuming f. > 0. Here z = (z 1 z 2 z 3 ,z 41 z 5 ) Tholds. The general

solution of problem (2.14) for fixed f., is:
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Vi

v2

(3.4) z = exp(J(f ,O)x) v3  + (Hh(z,f ,O)) (x)

The proposition (2.15) holds iff v1 = V2 =V 3  Obecause z

decays exponentially and the estimates (2.17)(a) and (2.21)(b)

hold.

For f E E R fixed we define

0 0
0 0 &,,

(3.5) 0(z, fe)) (x) = 0 0 G) + (Hh(z,f.,0)) (x)
e- 2 fcox 02

o e- 2 f0,x

as an operator on the Banachspace

(3.6) (AfO = {ulu(x) = U(x)e 2 f~x UE Cb([6,M))},IIuII ilUiib [6,®]

where CbU(6,-)) is the space of all functions which are conti-

nuous on [6,-) and bounded on [6,]. 6 > 0 will be chosen sui-

tably.

o( .,f.) maps Af into Af because of the estimates (2.17) (a),

(2.21) (a), (b) and (2.25). Every solution z is a fixed point

of o (.,f ) and the existence and uniqueness of this fixed point

is shown by the contraction mapping theorem, which is appli-

cable for 6 sufficiently large on any sphere with center

(00,,e2fx, -2 fx ,T(0,0,0,e-2 e 2) because the estimates (2.17)(b),

-12-



(2.21) (a),(b) and (2.25) hold. As mentioned before all so-

lutions z decay exponentially, however we have to prove that

there is no fixed point of \0 (.,f,) which decaysslower than

This is done by regarding 4o (.,f.) as an operator on the Ba-

nach-space

(3.7) (Be = [vlv(x) = V(x) x 2 ,V E Cb([6,-)),C >0},11vil -- IVlf[ 6,])

The contraction mapping theorem can be applied again for 6

sufficiently large and because Af a B holds for every

> O,f > 0 the established solutions z E Af are unique in B

The only difference in the proof of the contraction properties

of o(.,f.) in BC and Af is that the estimate (2.21)(d) has to

be used instead of (2.25).

Assume now that f < 0. If z £ B then Hh(z,f ,O) E B and

therefore vI = V= = I= O has to be fulfilled and

by the contraction mapping theorem z = 0 is the only fixed point.

For f_ = 0 the same argument is valid in BI+i , because the

largest Jordanblock of J(0,0) is three dimensional.

We exclude f_ < 0 because we only look for solutions in B for

f O and B for f = 0.CO ~ 1+e C

In order to investigate whether zmight decay faster than ef

we substitute H_, which is defined by (2.23), by H_ dnd

H =(H0 H+,g_ ) for H. Because of the estimate (2.24) with no

and = 2f and because of (2.2b) we conclude that

-13-
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(3.8) 11(Hh(z,f,O))(x)Il = O(e - 4 fx) for z E Af

holds. We have cut off the O(e- 2f x ) term in H_.

The (modified) operator o(.,f ) is defined by

O 0
O 0 I,

(3.9) (o(Z,f)) (x) = 0 0 w2 ) + (Hh(z,f ,0))(x)
e -2 f x 0

O e- 2 f .x

The contraction argument in Af applies again and because a

fixed point z of 0 (.,f ) establishes a solution of (2.14),

(2.15) the equivalence of the solution manifolds defined by

the fixed points of o and % for fE IR+ and (EiE2) E 2.

follows because z E Af. and because (2.22) holds.

Assume now that (w1 ,W2) = (0,0). Then the unique fixed point

of TO ( ,fc,) is z = 0 implying the trivial solution f = fc,

g = 0.

Moreover assume that w, = 0.

Then start the iteration zn+1 0 o(n,f C) with some vector

zO = (z91,z2,0,O,z5) E Af . (3.3) implies that h(z O ,f ,0) =

= 1': 2'O'O' 5)T

Therefore the (unique) fixed point z* of T (.,f.) fulfills

z* = lim zn = (z*,z*,O,O,z*) T E Af , which implies after pre-

multiplication with E(f ,0) that g 0.
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From the definitions of ' o and h we derive
0

(a) z= C(e -4f=x)

(b) z = O(e 4 f ox

(3.10) (c) z3 = 0(e 6 f.x )

(d) z = e- 2 f~x w1 + O(e -6 f.x)

(e) z = e- 2fc x w2 + (_I w2 + 1 w2  + O(ee- 6 f x )

(3.10) (c) and (d) hold because the terms of order e- 4f wx can-

cel in h3 (z,f.,,0) and h4 (z,f.,,0).

By applying the identity y - E(f.,O)z + y00(f ,0), integrating

f"'(x) = 4f2 z5 (x) twice and by continuation from [6,w] to

[0,-] we get

THEOREM I

Every solution of (1.2), (1.3), (1.5) with f > 0

and y = 0 fulfills:

f(x) = f. + e-2fx w2 + (_ w2 + 1 w) e-4ox +

+ O(e -6 f~ x ) , x +

g(x)= e- 2 f x w + O(e 
6 f x ), x )

where w I , w2 E IR. wI = 0 implies g _ O, w = w2 =0

implies f - f., g 0 0. Therefore no nontrivial so-

lution (f,g) oscillates for large x, the convergence

of f - f. and g to 0 for x - is monotonic.

~-15-



The boundary value problem (2.2), (2.3), (2.4) is well-posed

regarding the number of boundary conditions at x = 0 and

x = , because the three parameters (f ,W,w 2 ) have to be de-

termined from the three boundary conditions at x = 0 given by

(2.3).

-16-



4. Asymptotic Behaviour for y *0

In this case the eigenvalues of A(f Goy) are distinct and we get

(4.1) J(f.,Y) = diag(o'V2 (fo,y) V3 (f.,Y),V4 (f.,Y) V5 (f.,y)

1 1 11l

0 V 2  V 3  V4  V5

(4.2) E(f.r)= 0 v 2  v3 V2 2 v2

v~v5  v~v4  V2V v~v2

0 v2v5  3 4 4 v 3  5 v2

o y- 2y 2y 2yJ

Pursuing as in paragraph 3 and using that v 3 = 4 we get

0 0
o 0

(4.3) Z 0 0 G 1) + (Hh(z,f.,y))(x).
eV4(fY)X 02

o V(f,)

Defining (z,fCO) by the right hand side of (4.3) as an opera-

tor on the Banachspace:

we conclude as we did in paragraph 3 that ( .,f,,) is a contrac-

tion on any sphere with center (O,O,O,eV4X~ eV4xj k, if 8 is

sufficiently large.
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McLeod (1 969b) proved that there is no solution (f,g) that decays

slower to (f ,y) than eRev3x. We want to prove now that there

is no solution z of (4.3), which decays faster than that. There-

fore we again substitute H for H and as in paragraph 3 we find

that w = w2 = 0 yields z 0 0 as the unique fixed point of

0 0

0 0
(4.4) (¥(z , f.))(x) = 0 (w 2 ) + (ilh(z,fl,y)) (x).

ev4x 
0

O ev4x

So we have established the existence of a unique (f.,w 1 ,W2 )-

solution manifold for f E I., (w1 1w2 ) E C
2 .

The real solution manifold y = E(f ,y)z + y.(f ,y) is obtained

by choosing wI = 1- ) and w2 = w1 " The three parameters

12 ) . In order to show this, we set

u = E(f_,y)z and get a fixed-point equation for u by

(4.5) u = E(f ,y) y(E 1 (f ,y)u,f)

and therefore u = lim un where
n-* 0

0

n+1 0 - -1n
°- [1,

(4.6) un +  exp(A (f. ,y) x) E(f ,y) w + El(fo ,y) (9h (E-(f. ,y) un fy x

holds. The first term on the right hand side is real because

W = w2 ' the second is real if u is real because
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holds. This yields inductively that U as well as y = u + o

are real, if the starting function uo is real. Therefore we

get

THEOREM 11

Every solution of (1.2), (1.3), (1.5) with y # 0

fulfills for some ( lI82) F 'R 2

f(x) = f 00 + e-(fC0+c 1(f, Y) )x (51 Cos (c2 (f. Y) X) +

+ sin (c 2 (fo, Y) x) ) + 0(e-2 (f.D+c 1(f., y) ) x), x 00

g(x) 1 Y+L -(f'+clif"r) )x(a Cos (c (fCIY)x) +

+a2sin (c 2 (fC.,y)x)) + O(e 2(fc+C2(f**IT))X), x+

where a= a~ (f 0 y) = Re(v 2 (fC0Y)v3 (f Y,%a 31 iB2)

and

a2 = a (f ,Y) -Im(v 2 (f.,y)v (f.Y B-o
2 0043

Furthermore = 02= yields f =f., an d g

All nontrivial solutions f and g oscillate for

large x in the sense that there are sequences

xi iE mR with li i= lim x ao which are

the only zeros of f -f.0 resp. g -Y and
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x +1- xi T~ f4
i+~~~ 1 _________

Xi+1 - Xi)

holds for i - w.

Again the boundary value problem on [O, ] is well posed re-

garding the number of boundary conditions at x = 0 and x =

A convergent expansion for f and g of the form

I cn (f ,w w2 )exp(-n(f.+c 1 (f,y))x) can be obtained for all
n=o +n EIR ffrom the iteration zn1  = n(znf ) by choosing z 0

as starting function.
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5. Asymptotic Boundary Conditions

Boundary value problems on inifinite intervals are often sol-

ved by restricting to a finite but large interval and by im-

posing supplementary boundary conditions on the right end (see

Lentini (1978), de Hoog and Weiss (19801 and Markowich (1980)).

The approximative problems for the swirling flow problem have

the following form:

(5.1) u' = F(u,y)

(5.2) Bu(O) = b 0 < x < X, X >> 0

(5.3) S(u(X),y) = 0, S:1R 5 , JR2  for fixedrE JR

The two additional asymptotic boundary conditions (5.3) shall

express the desired behaviour of the exact solution y for

large x so that they shall assure convergence of u to y in

the following sense:

(5.4) llu(.,X)-yII[o x] -* 0 as X -4 C.

Moreover the order of convergence should be reasonably large

in order to enable us to compute the solution u(x,X) of the

two point boundary problem (5.1), (5.2), (5.3) sufficiently

fast.

From Spijker's nonlinear stability-consistency concept (see

Spijker (1972), paragraph 3.1) we conclude that it is suffi-

cient for the convergence to require that 1) and 2) hold, where:
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1) The problem

(5.5) I= DF (y (x) ) V + f(x) 0 <' x 4 X

(5. 6) By = 1

is for all f E C([0,X]), EIR ,(X EIR2 uniquely soluble and

the soluticl v fulfills a stability estimate of the form:

(5. ) HVI [O XI < (111311 +Xr- I(X IW I + X2r 1If 11II X

where r is the dimensicn of the largest Jordanblock belcnging

to zero eigenvalues of A(f",Y), Ithat means r = for y *0,f 0 E IR

and r = 2 for y = 0, f_ > 0.

2) the consistency assumpticn

(5. 9) 1 s (Y(XW ,Y)hl = 0 (X-2 (2 r-1) -c~ > 0

holds.

At least caivergence of the order

(5. 10) X2 r-l1 s(Y(MX) 11

results and the approximative problems (5. 1), (5.2), (5.3) are

for all sufficiently large X soluble. This soluticn u(x,X)

is unique in a ball, whose center is the restrictiai of y to
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[O,X] and whose radius is smaller than const. X-( 2 r-l) (in the

space C 1([o,X]) with lull = Hlull [O,X] + Ilu'i 10,X]) where const.
is sufficiently small.

The basic assumption is to require the solution of (2.2), (2.3),

(2. 4) to be isolated, i. e. the linearized problem

(5.11) w' 2F (y(x),Y)w, 0 < x , w E C([O,])

(5. 12) Bw(O) = 0

(5. 12) Cw(o) = 0

has the unique solution w = 0, so bifurcation and limit points

are excluded from the convergence analysis. Writing (5. 11) as

w' = 7 (yO ,y)w + G(x)w

with G(x) = O(IIy(x) - y(f,y) 1l we get

(5. 13) w = E(f ,y)exp(J(f ,T)x) &+E(f ,y) (HE- 1 (f,)Gw)(x)

where E = ( i, 2, 3,4,&5). By applying (5.12) we conclude

that &2 =  3 = 0 for y = 0 as well as y * 0.

The general solution of (5.11), (5.12) is

(5.14) w(x) = E(f ,y)(x) 0 0

0 0 1 t~

where O(x) is a fundamental matrix of
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F1

*u' = E - (  ,) (y x
(f Y (Y(X),y)E(f Y)u

Therefore y is isolated, iff the 3x3 Matrix

(5.15) BE(f ,Y)0(O) 0

12

is regular.

From this proposition and certain assumptions on as (y(X),y)
ay

Markowich (1980) concluded the unique solvability of (5.5),

(5.6), (5.7) for all (f,o,y(x)) E C([O,x]) x R 5 and the esti-

mate (5.8) similarly to de Hoog and Weiss (1980) who dealt with

problems, where Fy(y.) has no eigenvalue with real part zero.

These assumptions are:

(5.16) Jl -(y(X),y)E(fY) 0= O(1) for X -.

(5.17) 11 s(y(X) y) 11 = O(I) for X

as

(5.18) I-S(y(X),Y)E(f ,Y) 011 = O(Xr) for X o

Because y(X) decays exponentially it is sufficient to require

S(y (fcy),y) to fulfill (5.16), (5.17), (5.18) instead of
as-s(y(x),Y). Obviously (5.9) is fulfilled, if

(5.19) S(Y.(f.,Y),Y) = 0

-24-
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holds, and then the order of convergence is at least

Xoexp(-(f +c (f ,y))X) for y * 0 and X exp(-2f X) for y = 0

because of the expansions for y. So (5.16), (5.17), (5.18) with

Y0(f.,y) substituted for y(X) and (5.19) specify a class of ad-

missible supplementary boundary conditions. A natural choice is

S(u(X),Y0) = 0 10 0 ou(x) - ) = Cu(X) - c(y)

Obviously (5.19) is fulfilled and it is checked by a straight-

forward calculation that (5.16), (5.17), (5.18) hold for y = 0

as well as y * 0. From the asymptotic expansion given in Theo-

rems 1 and 2 we conclude that the order of convergence is mini-

mal for this choice, i.e. Xexp(-(f +c 1 (f ,y))X) for y * 0 and

X3exp(-2f X) for y = 0, but even these linear inhomogenous supp-

lementary boundary condition yield a reasonable - exponential -

order of convergence.

Lentini and Keller (1980) used the following asymptotic boun-

dary conditions

(u 1 (X)+c I (u1 (X) ,r) )u 2 (X)-+u 3 (X)-c 2 (u I (x) ,Y) (u4 (X)- -) -0
p c 2 (u I (X) , Y )u 2 (X)+(u I (X)+c 1 (u(X),T)) (u 4 (X)-y)+u 5 (X)

for T 0 and their limiting forms

(u(X),0 (2u(X)u2 (X) +u 3 (X) 0

[2u 1 (X)u 4 (x) +u 5 (X) 0

-25-
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for y = 0. These so called projection conditions are derived by

setting the zero these solution components of the linear prob-

lem (2.14) (without the Iinhomogenous' termh(z,f ,y)) and (2.15)

which do not automatically vanish at infinity. Checking the con-

ditions (5.16), (5.17), (5.18) and (5.19) yields the stability

and consistency of the projection conditions.

In order the determine the exact order of convergence which is

given by (5.9) we substitute the asymptotic expansions for y

from Theorem 1 in the case y = 0 and from Theorem 2 for y * 0

for u(X) into the projection conditions and get

(5.20) ISp(y(X),y)I = O(exp(-2(f +c 1 (f ,y))X)) for y E m

Therefore the projection conditions cancel the first two terms

of the series expansion for y. The expression (5.20) also ex-

plains, why Lentini and Keller (1980), who assumed no blowing

or suction at the disk had to increase the length of the

interval X in order to achieve the same accuracy when computing

higher order Karman swirling flows. Because of (1.9) the se-

quence fi() = fi for i = 1,2,..., is decreasing, therefore the

order of convergence decreases too unless X is increased.

-26-



Acknowledgement.

I am very grateful to Professor Richard Weiss from the In-

stitute for Numerical Mathematics at the Technical Univer-

sity of Vienna for many hours of stimulating discussions.

-27-



References

F.R. de Hoog and R. Weiss (1980)
An Approximation Method for Boundary
Value Problems on infinite Intervals.
Computing 24, pp. 227-239.

T. von Karman (1921) Ober laminare Reibung.
Z. Angew. Math. Mech. 1, pp. 232-252.

M. Lentini (1978) Boundary Value Problems over Semi-finite Intervals.
Ph.D. Thesis, California Institute of

Technology, Pasadena, CA 91125.

M. Lentini and H.B. Keller (1980)
The von Karman SwiLling Flows.
SIAM J. Appl. Math., Vol. 38, No 1.,
pp. 52-64.

P.A. Markowich (1980) Randwertprobleme auf unendlichen In-
tervallen.
Dissertation, Technische Universit~t
Wien.

J.B. McLeod (1969a) Von Karman's Swirling Flow Problem.
Arch. Rat. Mech. and Anal., Vol 33
pp. 91-102.

J.B. McLeod (1969b) The asymptotic Forms of Solutions of
von Karman's Swirling Flow Problem.
Quart. J. Math. Oxford, (2) 20,
pp. 483-496.

J.B. McLeod (1970) A Note on rotationally symmetric Flow
above an infinite rotating Disk.
Mathematika, Vol. 17, pp. 243-249.

J.B. McLeod (1971) The Existence of axially symmetric
Flow above a rotating Disk.
Proc. Roy. Soc. A 324, pp. 391-414.

M.H. Rogers and G.N. Lance (1960)
The rotationally symmetric Flow of a
viscous Fluid in the Presence of an
infinite rotating Disk.
I. Fliud Mech. 7, pp. 617-631.

M.N. Spijker (1972) Equivalence Theorems for nonlinear

finite Difference Methods. in:
Numerische L6sung nichtlinearer par-
tieller Differential und Integrodif-
ferentialgleichungen.
Lecture Notes in Mathematics, Vol. 267.



SECURITY CLSIIAINOf 1-1IS PACGE *I11fo, ,t d f.~*~ fr~. e

REPORT DOCUMENTATION PAGE RLA'o INSTRUCTIONS
REPOT DoUMENAI BF . CLMPNfrTING FORM

1. REPORT NUMBER 12, GOVT ACCESSION NLU. 3. RECIPIENT'S CATALOG NUMBER

2156 I'f,-/io
4. TITLE (mid Subtitle) 5. TYPE OF REPORT & PERIOD COVERED

ASYMPTOTIC ANALYSIS OF von KARAN FLOWS9  Summary Report- no specific

., reporting period

6. PERFORMING ORG. REPORT NUMBE4

7. AUTHOR(a) ..- _I ONTRACT OR GRANT NUMBER:&)

loPeter A. Markowich /PDAAG29- 80-C-0041/
____________N Al - MCn-7~ W7$62

9. PERFORMING ORGANIZATION NAME AND AOBRESS 10. PROGRAM ELEMENT PROJECT, TASK

X - AREA & WORK UNIT NUMBERS

Mathematics Research Center, University of

610 Walnut Street Wisconsin 1 - Applied Analysis

Madison, Wisconsin 53706
II. CONTROLLING OFFICE NAME AND ADDRESS 2.. 12. REPORT OATE

1, 11 ) Decl~ 1980
See Item 18 belowI 13. NUMBER OF PAGES

28
14. MONITORING ",GENCY NAME & ADDRESS(if different from Controlling Office) IS. SECURITY CLASS. (of this report)

' Tf>L 'I~j ~ *, UNCLASSIFIED
150. DECLASSIFICATION'OOWNGRAOING

_t SCHEDULE

16. DISTRIBUTION STATEMENT (of this Report)

Approved for public release; distribution unlimited.

17. DISTRIBUTION STATEMZNT (of the abstract entered in Block 20, it different from Report)

IS. SIPPLEMEI{TARY NOTES

U.S. A. army <esearch Office National Science Foundation

P.O. Box 12211 Washington, D. C. 20550

Research Triangle Park

Jorth Carolina 27709

19. KEY WORDS (Continue or reverse side it necessary and identify by block nrmber)

Navier Stokes equation, singular points, asymptotic properties,

asymptotic approximation

2 ABSTRACT (Continue o reverse side If necessary and Identity by block nurber)

his paper is concerned with asymptotic expansions of solutions of von Karman's

swirling flow problem. These expansions are usedto prove the convergence of a

class of approximative problems, which are set up by substituting the infinite

interval on which von Karman's problem is posed, by a finite but large one and by

imrposing supplementary boundary conditions at the far end. The asymptotic expan-

sions are crucial for the determination of the order of convergence. Exponential

convergence is shown for well-posed approximative problems. ntiued- -_---

--- 7;.--- - - ---~---.. ..-....

FDUT'AN73A1473 EDITION OF I NOV 65 IS OeSOLETE UNCLASSIFIED

SECURITi CLASSIFICAT ION OF THIS PAGE (4h~en 13.1. EnIerod)



20. (Abstract continued)

The given approach is applicable to general autonomous nonlinear boundary
t Ivalue problems on infinite intervals, for which the von Karman problem

may be considered as a model problem.




